Exponential Model Selection (in NMR) Using Bayesian Probability Theory
نویسندگان
چکیده
In a companion article in this issue, parameter estimation using exponential models was addressed when the form of the model is known (i.e., when the number of exponentials and whether a constant offset is present are known). In this article, we apply Bayesian probability theory to the problem of determining the functional form of the model. The calculations are implemented using Markov chain Monte Carlo with simulated annealing to draw samples from the joint posterior probability for the parameters and the functional form of the model. Monte Carlo integration is then used to approximate the marginal posterior probabilities for all the parameters, including the number of exponentials and whether a constant offset is present. Examples using empirical data are given to illustrate the calculations. © 2005 Wiley Periodicals, Inc. Concepts Magn Reson Part A 27A: 64–72, 2005
منابع مشابه
Exponential Parameter Estimation (in NMR) Using Bayesian Probability Theory
Data modeled as sums of exponentials arise in many areas of science and are common in NMR. However, exponential parameter estimation is fundamentally a difficult problem. In this article, Bayesian probability theory is used to obtain optimal exponential parameter estimates. The calculations are implemented using Markov chain Monte Carlo with simulated annealing to draw samples from the joint po...
متن کاملBayesian Analysis. Iii. Applications to Nmr Signal Detection, Model Selection and Parameter Estimation 1
The two preceding articles developed the application of Bayesian probability theory to the problems of parameter estimation, signal detection, and model selection on quadrature NMR data in some generality. Here those procedures are used to analyze free induction decay data, when the models are sinusoidal. The exact relationship between Bayesian probability theory and the discrete Fourier-transf...
متن کاملHyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods
In this paper, a new probability distribution, based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated. The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function. Based on the base log-logistics distribution, we introduce a new di...
متن کاملbelief function and the transferable belief model
Beliefs are the result of uncertainty. Sometimes uncertainty is because of a random process and sometimes the result of lack of information. In the past, the only solution in situations of uncertainty has been the probability theory. But the past few decades, various theories of other variables and systems are put forward for the systems with no adequate and accurate information. One of these a...
متن کاملOn the use of Bayesian probability theory for analysis of exponential decay data: an example taken from intravoxel incoherent motion experiments.
Traditionally, the method of nonlinear least squares (NLLS) analysis has been used to estimate the parameters obtained from exponential decay data. In this study, we evaluated the use of Bayesian probability theory to analyze such data; specifically, that resulting from intravoxel incoherent motion NMR experiments. Analysis was done both on simulated data to which different amounts of Gaussian ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005